1D Convolutional neural networks (CNN)
We benchmark a simple 1-D convolutional model with a residual connection after every layer.
class ConvBlock(nn.Module):
def __init__(self, channels, kernel_size):
super().__init__()
self.conv = vollo_torch.nn.PaddedConv1d(channels, channels, kernel_size)
def forward(self, inp):
x = self.conv(inp)
return nn.functional.relu(x) + inp
class CNN(nn.Module):
def __init__(self, num_layers, kernel_size, channels):
super().__init__()
assert num_layers >= 1
self.cnn = nn.Sequential(
*[ConvBlock(channels, kernel_size) for i in range(num_layers)],
)
def forward(self, x):
x = self.cnn(x) # N x channels x T
return x
IA-840F: 3 big cores
Model | Layers | Channels | Parameters | Mean latency (μs) | 99th Percentile latency (μs) |
---|---|---|---|---|---|
cnn_tiny | 3 | 128 | 393K | 2.6 | 2.7 |
cnn_small | 3 | 256 | 1.6M | 2.7 | 2.9 |
cnn_med | 6 | 256 | 3.1M | 3.4 | 3.6 |
The kernel size for all models is 8.
IA-420F: 6 small cores
Model | Layers | Channels | Parameters | Mean latency (μs) | 99th Percentile latency (μs) |
---|---|---|---|---|---|
cnn_tiny | 3 | 128 | 393K | 2.6 | 2.8 |
cnn_small | 3 | 256 | 1.6M | 3.1 | 3.2 |
cnn_med | 6 | 256 | 3.1M | 4.2 | 4.3 |
The kernel size for all models is 8.